The IFR Story


(Excerpted from a series of articles in THE REPUBLIC News and Issues Magazine, June-September 2005. Preface by Terry Robinson.)


Soaring fuel prices, with the accompanying economic vulnerabilities, and environmental concerns about nuclear power plants in our own back yard has brought increased attention to energy needs in the past few months. The Republic Magazine wishes to review in the next months just what should play major roles in filling our future energy needs, and in particular, a nuclear energy program of the recent past that appears to have been bypassed for political reasons. Nuclear energy in some form promises abundant, safe, environmentally friendly, and economic power, and it is worthwhile examining what is known about advanced forms of nuclear power technology. When hearing the term nuclear power, many people conjure up images of Chernobyl, Three Mile Island, nuclear weapons, and vast quantities of radioactive waste lasting forever. We here at The Republic shared these concerns, but were pleased to learn that there had been advanced nuclear technology research that eliminated or at least minimized the major concerns about nuclear power generation. We questioned why this research was terminated. The Republic Magazine contacted an expert in this field, Dr. Charles Till, to help us present this topic to you. The Republic Magazine extends our appreciation to Dr. Till for helping us and our readers understand how nuclear power technology has evolved as well as wading through some of the myths and related issues involving nuclear power reactors. Dr. Till was the long-time director of civilian nuclear power reactor development at Argonne National Laboratory. This program, by far the largest in the nation in the last decades of the century, was devoted entirely to research and development of nuclear reactors for electrical power generation. About two thousand engineers, scientists and supporting staff, along with a large complex of the facilities required for such work, were under his direction and guidance. For ten years, from 1984 to 1994, the work of this large team was focused exclusively on development of an Argonne brain-child, the Integral Fast Reactor. This technology promised an inherently safer reactor, a shorter-lived waste, and a limitless fuel supply.


In the decade from 1984 to 1994 scientists at Argonne National Laboratory developed an advanced technology that promised safe nuclear power unlimited by fuel supplies, with a waste product sharply reduced both in radioactive lifetime and amount. The program, called the IFR, was cancelled suddenly in 1994, before the technology could be perfected in every detail. Its story is not widely known, nor are its implications widely appreciated. It is a story well worth telling and in this series of articles we propose to do precisely that. The Integral Fast Reactor, or IFR, was a developmental program for a new nuclear power technology, one with very desirable characteristics not possessed by the current generation of nuclear reactors. The work was done at Argonne National Laboratory, just outside Chicago, and at Argonne’s large reactor development facilities in the desert in southeastern Idaho. Taken together, the characteristics of this new technology amounted to a revolutionary improvement in the prospects for nuclear power for the generation of electricity in the massive amounts necessary in the future. It held out the possibility of revolutionary improvement in literally all the important areas of nuclear power: fuel efficiency, safety, waste, and non-proliferation characteristics. The name Integral Fast Reactor described principal characteristics of the technology: the word Integral was chosen to denote the fact that every element of a complete nuclear power system was being developed simultaneously, and each was an integral part of whole: the reactor itself, the processes for treatment of the spent fuel as it is replaced by new fuel, the fabrication of the new fuel, and the treatment of the waste to put it in final form suitable for disposal, all were an integral part of the development and the product. Nothing was to be left behind for development later. No detail was to be left hanging, unresolved, to raise problems later, as had been the case in present generation of nuclear power. (The word “Fast” simply denotes technical characteristics of the neutrons in reactor operation, useful to know but not central to this discussion.) The new safety characteristics of the reactor can be summarized by the phrases “inherently safe,” or “passively safe,” and both have been used in descriptions of the technology. The central point is that the reactor responds to any event that could lead to any significant accident by lowering reactor power to safe levels, right up to complete shutdown if necessary, without the need for any operator action, or indeed for any device at all to work - the reactor responds this way inherently, just due to materials used in its construction. Passive then denotes the fact that no movement of control rods, or any other mechanical device, is needed, nor is any action by the operators, the reactor responds to trouble passively, simply taking it in stride. These safety characteristics were made possible by the development of a new fuel type for the IFR, a metallic fuel alloy, which, along with use of a liquid metal for coolant, made the IFR reactor invulnerable to the most serious accidents that can befall a reactor. There are two of these, one actually happened at Three Mile Island in 1979, and the other at Chernobyl in 1986. Amazingly, about a month before the Chernobyl accident, Argonne scientists had performed a remarkable demonstration on their IFR test reactor in Idaho, to an invited international audience, of the ability of the IFR to quietly shut down in this manner without any damage whatsoever. The first demonstration was precisely that of a Chernobyl-type accident if it were to occur in an IFR. Further, on the same day, the exact conditions of the Three Mile Island accident were duplicated, again with quiet damage-free shutdown. When the actual Chernobyl accident occurred an alert science reporter for the Wall Street Journal, Jerry Bishop, a man with a long history of reportage on nuclear power development, recognized the importance of the Idaho demonstration. His article in the Journal caused a sudden increase in Congressional support for the IFR, and enabled its developers to accelerate the pace and widen the scope of IFR development. The new fuel type also allowed new technology for processing the used fuel as it is replaced in the reactor. This gave huge benefits. It enabled the used fuel to be cleaned up and used again and again, extending fuel supplies close to a hundred-fold and, extremely importantly, it made the lifetime of the radioactive waste much, much shorter, and very much less in volume as well. Because the fuel is metal, the process uses an extension of the electro-refining process in common use in the metal refining industries. The IFR process had a further advantage in that it was small in size, and cheap to implement. (Present methods of reprocessing require huge plants and billions of dollars to construct.) The final benefit from IFR fuel and fuel processing lies in the IFR fuel product itself from the refining process. The present methods of reprocessing commercial nuclear fuel in current use in several nations, but not the US, were actually developed originally to provide a very pure plutonium product for use in nuclear weapons. Their capability still extends to such usages. The IFR process, on the other hand, provided a fuel form with many different materials in it, next to useless for weapons purposes, but ideal as a fuel material. The process cannot purify plutonium alone from the IFR spent fuel, it is scientifically impossible for it to do so. The IFR technology should not contribute to weapons proliferation, on the contrary, if it replace the present methods it should substantially reduce such risks. It is the IFR refining process also that allows the development of a waste process with less volume and a shortened radioactive life. The materials that are carried along in the fuel product that ruin its value for weapons are the very materials that give nuclear waste its long lived radioactivity. But because they remain in the fuel through the process they are burned up in the recycle of the fuel back into the reactor and do not appear in the waste in any significant amount. The reduction in radioactive lifetime is dramatic – from hundreds of thousands of years, to a few hundred years at most. And the IFR development included the development and proof testing of very stable inert waste forms for its final disposal. As the discussion above starts to make clear, the IFR technology was one in which all the pieces fitted together, dovetailing to make each part of the system complement the rest, and make an entire system possible that had could have had a truly revolutionary impact on nuclear power for the future. The implications of its termination on energy supplies for the future are plainly and painfully obvious. This was no small marginal supplier of energy, this dealt with entire electrical energy needs of nations. Its development was terminated and its personnel and facilities scattered to the winds. It is an option no more.


Last month we looked briefly at the history of nuclear power and the attributes of an advanced nuclear reactor system that appeared to promise substantial improvements over present reactors, but whose development was terminated a decade ago by the Clinton administration. This month we look at the question, “Do we really want nuclear energy, with its attendant risks,” and what should go into formulating a sensible answer? What, after all, is the central point? In looking at energy, it’s really all a question of magnitude. Ask how much. How much energy is produced, how much energy can be produced. It is energy alone that powers civilized societies. Without energy there would be no civilization. Huge amounts of energy are needed to sustain civilizations. Do the alternatives to fossil fuels, and indeed to nuclear energy really measure up? So in thinking about nuclear power we need to think about what the alternatives really are. Nuclear power has magnitude – it can supplant fossil fuels entirely in producing electricity, and electricity can substitute for most other forms of energy. Well over third of our energy goes to generate electricity today, and, if electricity is needed to substitute for other energy forms in the future, even more could be. But what are the possibilities of proposed alternatives? After all, methods proposed to take the place of fossil fuels must supply electricity in huge amounts, all the energy required, in fact, to light, heat, cool, manufacture goods, and generally power our nation. Fossil fuels, oil first and above all, then natural gas and coal, power our nation today. What do all these have in common? They are the producers of greenhouse gases – coal about double natural gas, oil somewhere in between. But make no mistake – all do. Natural gas is occasionally presented as environmentally benign, but its product is CO2 just like coal and oil. If one believes that global warming is occurring, and that it is due to human activities, all three of the principal fuels that power our nation are at fault. But perhaps more to the point, all three are finite in amount, what is plentiful today, and reasonable in price, cannot always be. It is most certainly only a question of when. And foreign sources will increasing dominate, as they do now for oil, and will increasingly do for natural gas as well. Only coal remains plentiful in the US. However, the largest reserves underlie the west, their recovery requires extensive strip mining and their coal is high in sulfur content. But coal today produces half the electricity in the US, while natural gas and nuclear, about equally, provide the lion’s share of the rest. Proposed alternatives, the “renewable” energy sources, are generally solar and they are of two kinds. The first is solar energy collected by natural processes on earth. Sunlight evaporates water, rain deposits water at higher elevation, hydro power is produced by turbines when the water flows again to lower elevations. Sunlight produces growth in living things, we burn the trees and we burn the methane from animal wastes. Sunlight causes the temperature gradients that cause the air to move, wind turbines are put where the wind is strong. Secondly, sunlight can be collected by man-made devices to give high temperature heat to run steam turbines or, for photovoltaic devices, to produce electricity directly. But how much energy? That is the key question. Hydro produces substantial amounts, about seven per cent of our electricity, a third of the amount produced at present by natural gas or nuclear. Most would consider hydro a renewable, rain after all is a yearly fact, but Carol Browner, the EPA Head in the Clinton administration removed it from the list of renewable sources because dams flood the areas above them. Without hydro, ALL renewable sources, both natural and man made, produce only two percent on our electrical power. Worse, the bulk of this is from burning wood and waste, which does nothing to help with CO2 emissions, they are hydrocarbons too. And ALL high tech collectors, AND wind power, added together, produce just one quarter of one percent of our electricity. Since the late seventies when the Carter administration called for a “national commitment to solar energy,” and a goal of producing twenty per cent of the nation’s energy from solar, even with substantial tax breaks and subsidies, just one quarter of one percent of our electricity is the best that could be done in the twenty five plus years since. The reason is simple. Solar energy is dilute. Once it’s collected the various applications become possible. But to collect it in the amounts required to make a real difference is a huge difficulty. There is no short cut, no technology can be invented to surmount it: massive areas of the earth’s surface must be devoted to it. Solar energy has been well understood for well over a century, the amount of solar energy falling on the planet is known, fixed and unchanging. The areas required for collectors, if solar was to make a significant contribution on the scale of present energy needs, are, in turn, on the scale of entire states. Efficiency increases to the limit the physics allows do not alter the issue. The scientific and engineering realities are plain. The amounts of materials, even cheap materials, the land areas occupied, the maintenance required, and also, more than possibly, the lawsuits brought by the very environmental industry promoting solar, make the whole solar enterprise on the scale required to power the nation a dream, not a practical reality, not now, not in the future. Wind power has increasingly been put forward as a realistic option. Wind turbines today generate a small fraction of one percent of our electricity. Wind turbine farms require large areas of land also, for reasons to do with the aerodynamics of the wind turbines. Nowhere does the wind blow all the time and a utility cannot supplant any normal generating capacity with wind turbines – power so generated cannot be guaranteed to be there when it is needed. There are a variety of other engineering problems to add to utility’s difficulty in adding wind generated electricity to its generation mix so that only a small fraction of a utility’s electricity can be wind generated. This will always be so. The amount we do have about equals the output of one medium sized conventional power plant, and is due largely to construction financed by generous Federal tax credits. Other non-conventional sources, geothermal, ocean waves and tides, at best can make only marginal contributions to our nation’s energy needs. To sum up, the alternatives to fossil fuels that could promise the magnitudes of energy required to meet our nation’s need are very, very few. It is not as though plentiful alternatives exist, and one can be weighed against another and a judicious selection be made on the basis of economics and environmental and other considerations. The blunt fact is that there are the fossil fuels and there is nuclear. Failure to recognize this, while focusing on options that do not and cannot have the magnitudes required, will inevitably lead to increasingly dangerous energy shortages. Who then will answer? Will the environmental activist, who blocks real options, and puts forth options that cannot meet the need? The termination of the IFR program was their cause. Yet nuclear is the only realistic option to substantively replace fossil fuels. And IFR-like technology is necessary to give nuclear inexhaustible fuel. In the next issue we will describe the IFR termination events, and then go on in the next part to lay out considerations for the choice of nuclear power technology options. Various nuclear options do exist, some more immediate, some more far-reaching than others. In the latter the best hope for the future lies.


The end of the IFR was signaled in Bill Clinton’s second State of the Union address in early 1994. Development of the reactor that consumed much of its own waste, was largely proof against major accident, and was so efficient that existing fuel supplies would be inexhaustible, was to be terminated immediately. The bright promise of an energy future with a new, much improved reactor system was to be extinguished. The new Clinton Administration had brought back into power many of the best known of the anti-nuclear advocates. The IFR developers at Argonne National Laboratory were well aware of the implications of this disturbing development and they were under no illusions about what the future held for them. Ten years of development work were behind them. From tiny beginnings midway through the first Reagan Administration, success after success in the development work had allowed a broad and comprehensive program to be put in place. Every element and every detail needed for this revolutionary improvement in nuclear power was being worked on. Another two years should bring successful completion of the principal elements, the program leaders believed. But in 1994 both houses of Congress Democrats were in the majority. Anti-nuclear advocates were also settling into key positions in the Department of Energy. That department controlled IFR funding. Other anti-nuclear people were now in place in the office of the President’s science advisor, in the policy positions elsewhere in the Administration, and in the White House itself. The IFR had survived the first year of the new Administration on its unquestioned technical merits, but only after some debate within the Administration. But the President’s words were chilling, “We will terminate unnecessary programs in advanced reactor development...” The one-sided fight was on. The President’s budget, submitted to Congress, contained no funding for the IFR. There is no funding source to tide over a National Laboratory when funding is cut off, the program is dead and that is that. Democrat majorities in the House of Representatives were nothing new, and in themselves they were not especially alarming to the IFR people. During the previous ten years the votes on IFR funding in the House had always been close, and although a majority of the Democrats always opposed there were enough Democrats in support of IFR development to squeak through each year. The Senate votes on the IFR, sometimes with Republican majorities, sometimes without, as a rule went easier. But this was a very different year: Now the Administration had gone from weak support to active opposition to the IFR program. Congressional staff, some of whom later moved to staff the White House itself, began coordinating opposition to support the Administration’s decision to terminate funding for the IFR. The usual Congressional hearings followed, testimony pro and con was offered, and in the end the House of Representatives upheld the President’s position. The battle moved to the Senate. There everyone knew the vote was going to close. The key to the Senate position was Bennett Johnston, Democrat of Louisiana, Chairman of the Energy and Water Subcommittee of the Senate Appropriations Committee. This committee oversaw IFR funding in the Senate. After lengthy testimony, Johnston decided to fight for continued IFR development. That set the stage for a full scale Senate floor fight. It took place over a period of several hours. The pro-IFR forces were led by Johnston himself. He had like-minded colleagues in both parties give supporting speeches, and he himself summarized the need for continued development of the IFR. Johnston had been involved in energy matters for decades, knew his subject, and matter-of-factly put the case for the IFR. He stressed the likely need in the light of the vastness of future energy needs. The anti-IFR forces were led by John Kerry. He was the principal speaker and the floor manager of the anti forces in the Senate debate. He spoke at length, with visual aids; he had been well prepared. His arguments against the merits of the IFR were not well informed, more, many were clearly wrong. But what his presentation lacked in accuracy it made up in emotion. He attacked from many angles, but principally he argued proliferation dangers from civilian nuclear power. While all serious weapons development programs everywhere in the world have always taken place in huge laboratories, in specialized facilities, behind walls of secrecy, and there has been negligible involvement with civilian nuclear power, it is impossible to argue that there CAN be none. For this reason the IFR processes were specifically designed to further minimize such possibilities, and, if developed, they would have represented a significant advance over the present situation. This did not slow Senator Kerry, as he went through the litany of anti-nuclear assertions, articulately and confidently. After both sides had their say the vote came. The pro-IFR forces had prevailed. But now the funding bill had to go to compromise committee of both houses to bring the different versions passed by two houses into one bill to be returned to the President for signature into law. There was brief hope that IFR development could continue even in the face of the powerful opposition. But the compromise committee, behind the closed doors normal to such meetings, upheld the House position. There was to be no IFR funding. The IFR was dead. A few weeks later, the mid-term elections swept Republicans into power in Congress. The IFR votes had always been politicized. With some significant exceptions, in fact just enough each year to fund the IFR, the vote had always been along party lines. Had the IFR been able to hang on for a few more weeks its development almost certainly would have gone on to completion. Instead, it became the path not taken.


We have traced the history of the IFR development, its benefits, and its termination before it could be perfected. Its most important aspect was the promise of unlimited fuel supplies – the promise of energy domestically generated unlimited in amount or time. We have seen the inadequacy of proposed alternatives to fossil fuels other than nuclear. Underlying all discussions of energy always is the shadow of war, war over adequate energy supply, whether expressed as religion, or political theory, or nationalistic aspirations, adequate energy is the driver. Adequate energy is the fuel of civilizations. History provides abundant evidence: Nations will not stand idly by as their energy supplies are choked off, or even significantly threatened. Powerful nations will use that power. Today the realities of energy supply may be influencing some of those who long have actively opposed activities to assure adequate energy at reasonable cost. It seems strange to hear of the founder of Greenpeace testifying to Congress on his new belief that nuclear power must be pursued. His views, most vehemently, are not the views of the organization he founded. Nuclear power is significant in the President’s Energy Policy, and the President has been appropriately vocal in recent weeks in its support. These are important developments. There may be a majority coalescing today of those who see that nuclear power must be given an increased role. But just what role, it is fair to ask, and indeed nuclear power in what form? Are existing reactor types good enough? Do we need just more of them? What of advanced reactor types? Are there alternatives to present reactors? We have seen that IFR development was terminated ten years ago. Have there been significant accomplishments in other directions in nuclear power in those years? These are questions that can be and must be assessed accurately. There is plenty of knowledge today to do so. Nuclear power now has sixty years of history. And this much is certain: The assessment to be ACTED UPON today must be insightful and it must be correct. It is in the nature of things that there will be few further chances. So what should be done in the coming years? The Light Water Reactor, the LWR, is the reactor type that must be built when new nuclear power construction begins. That’s it for the initial thrust. Nothing experimental, nothing untested, every single one of the current hundred or so reactors in present US utility use is an LWR. This reactor type has proven itself over and over again. Its one accident over twenty five years ago, in TMI-2, while highly publicized, and damaging to equipment, hurt no one. Since then the reactors themselves, the operational procedures, and the crews that operate them, have all improved greatly. There have been no accidents, no even marginally serious events over these twenty five years. Accidents in any large system, nuclear or non-nuclear, are possible always, but the probability in these systems is very low, and is becomes lower with each year of experience operating them. Similar to oil refineries, also absolutely vital to the national energy infrastructure, no nuclear plants of any kind have been ordered since 1974. Environmental activists, with their lawsuits, have made construction too unpredictable and thus too financially risky. With the current Administration this may be changing, and the situation may soon allow some progress to be made. The first reactors built when construction starts again must be reliable workhorses. The LWR fills that bill. Are they suitable for the long term? No. They very effectively produce electricity. However, their efficiency is limited by the relatively modest operating temperature allowed by their water cooling, and they use fuel very inefficiently; less than one percent of uranium mined is consumed in this reactor type, the rest is waste. No significant improvement is possible, the principal characteristics, good and bad, are set by the materials it’s made of, and they are not changeable: The present reactor therefore is not a logical candidate for further R and D. There are two, and only two, such candidates, and they, in all likelihood, will compete for precious funding. They have very different properties and successfully developed each would have very different purposes. Neither is new; the possible characteristics of each have long been known. Both require R and D to make possible characteristics real and actual. The one currently favored is the High Temperature Gas Cooled Reactor, the HTGR, which operates at elevated temperatures; temperatures, it is hoped, high enough to allow hydrogen production from heat related processes. The aim is laudable, for hydrogen, with development, can substitute for oil in transport. Hydrogen is certainly no SOURCE of energy. It must be generated by a real energy source, though electrical or heat related processes, and either way hydrogen generation is not particularly efficient, so in that in the net energy is lost. Further, the energy source must be large to make enough Hydrogen in amounts sufficient to matter to transport needs. Nuclear energy would be ideal, avoiding as it does further fossil fuel depletion and accompanying greenhouse and other undesirable gases. The weaknesses of the scheme lie in the very temperatures needed for hydrogen production, which place great strain on the materials used in the reactor plant, the effects of which to this point are quite untested. Additionally, the HTGR does little to increase the uranium fuel utilizations. Depending on specific design it may use uranium resources somewhat more efficiently than the LWR, but that too is unclear, and it certainly true that any improvement over the LWR in this area would not be significant enough to matter much overall. This is a serious weakness, for it means that the HTGR in no way alters the need for a reactor type that can extend fuel resources indefinitely, preferably to the point that they become inexhaustible. This, of course, was the promise of the IFR. The principal need for advanced reactor development is THIS need – inexhaustible domestic non-fossil fuel supplies. The technology of course need not be that of the IFR. But its characteristics have to be very similar to the IFR, and the technical necessities of such technology make it certain that it will resemble the IFR no matter what the precise technology is. IFR development was terminated before the principal element in the fuel processing could be proven – success at full scale in separating and collecting the new fuel product mixture from the spent fuel. This mixture is composed of plutonium, americium, neptunium and curium, the so-called man-made elements, as well as some residual uranium. It is a mixture most unsuitable for weapons but ideally suited to fuel for reactors such as the IFR. The process was developed at small scale. It was a success at laboratory scale. But it is a very big step to scale up to practical amounts. And this is precisely where the development was aborted; the large scale equipment was largely in place, and the skilled personnel, but the work had not yet started. Years later, two or three inconclusive tests were tried, but did little to settle questions of practicality A process that accomplishes what is required must proven at scale before any IFR type reactor system could go forward. The hard truth is this: large scale nuclear energy needs an IFR type characteristic to give nuclear power inexhaustible fuel. That, in turn, gives nuclear power its long term future. It is that characteristic that leads its proponents to single out this reactor type for development, and it is also precisely this that caused, and very likely will cause, its opponents to single it out to be stopped.